miércoles, 28 de agosto de 2013

ÁREA DE UN TRIANGULO

Un triángulo, en geometría, es un polígono determinado por tres segmentos que se cortan dos a dos en tres puntos(que no se encuentran alineados, es decir: no lineales . Los puntos de intersección de las rectas son los vértices y los segmentos de recta determinados son los lados del triángulo. Dos lados contiguos forman uno de los ángulos interiores del triángulo.
Por lo tanto, un triángulo tiene 3 ángulos interiores, 3 ángulos exteriores, 3 lados y 3 vértices.
Si está contenido en una superficie plana se denomina triángulo, o trígono, un nombre menos común para este tipo de polígonos. Si está contenido en una superficie esférica se denomina triángulo esférico. Representado, en cartografía, sobre la superficie terrestre, se llama triángulo geodésico.

El triángulo es un polígono de tres lados.



Clasificación de los triángulos[editar · editar fuente]

Los triángulos se pueden clasificar por la relación entre las longitudes de sus lados o por la amplitud de sus ángulos.

Por las longitudes de sus lados[editar · editar fuente]

Por las longitudes de sus lados, todo triángulo se clasifica:
  • Como triángulo equilátero, cuando los tres lados del triángulo son del mismo tamaño (los tres ángulos internos miden 60 grados ó \pi/3\, 

  • Los triángulos se pueden clasificar por la relación entre las longitudes de sus lados o por la amplitud de sus ángulos.

    Por las longitudes de sus lados[editar · editar fuente]

    Por las longitudes de sus lados, todo triángulo se clasifica:
    • Como triángulo equilátero, cuando los tres lados del triángulo son del mismo tamaño (los tres ángulos internos miden 60 grados ó \pi/3\, radianes.)
    • Como triángulo isósceles (del griego ἴσος "igual" y σκέλη "piernas", es decir, "con dos piernas iguales"), si tiene dos lados de la misma longitud. Los ángulos que se oponen a estos lados tienen la misma medida. (Tales de Mileto, filósofo griego, demostró que un triángulo isósceles tiene dos ángulos iguales, estableciendo así una relación entre longitudes y ángulos; a lados iguales, ángulos iguales1 ).
    • Como triángulo escaleno (del griego σκαληνός "desigual"), si todos sus lados tienen longitudes diferentes (en un triángulo escaleno no hay dos ángulos que tengan la misma medida).

    Triángulo equilátero.Triángulo isósceles.Triángulo escaleno.
    EquiláteroIsósceles
  • Como triángulo isósceles (del griego ἴσος "igual" y σκέλη "piernas", es decir, "con dos piernas iguales"), si tiene dos lados de la misma longitud. Los ángulos que se oponen a estos lados tienen la misma medida. (Tales de Mileno, filósofo griego, demostró que un triángulo isósceles tiene dos ángulos iguales, estableciendo así una relación entre longitudes y ángulos; a lados iguales, ángulos iguales1 ).
  • Como triángulo escaleno (del griego σκαληνός "desigual"), si todos sus lados tienen longitudes diferentes (en un triángulo escaleno no hay dos ángulos que tengan la misma medida).

Triángulo equilátero.Triángulo isósceles.Triángulo escaleno.
EquiláteroIsósceles

[editar · editar fuente]

Los triángulos acutángulos pueden ser:
  • Triángulo acutángulo isósceles: con todos los ángulos agudos, siendo dos iguales, y el otro distinto. Este triángulo es simétrico respecto de su altura.
  • Triángulo acutángulo escaleno: con todos sus ángulos agudos y todos diferentes, no tiene eje de simetría.
  • Triángulo acutángulo equilátero: sus tres lados y sus tres ángulos son iguales; las tres alturas son ejes de simetría (dividen al triángulo en dos triángulos iguales).
Los triángulos rectángulos pueden ser:
  • Triángulo rectángulo isósceles: con un ángulo recto y dos agudos iguales (de 45° cada uno), dos lados son iguales y el otro diferente: los lados iguales son los catetos y el diferente es la hipotenusa. Es simétrico respecto a la altura de la hipotenusa, que pasa por el ángulo recto.
  • Triángulo rectángulo escaleno: tiene un ángulo recto, y todos sus lados y ángulos son diferentes.
Los triángulos obtusángulos pueden ser:
  • Triángulo obtusángulo isósceles: tiene un ángulo obtuso, y dos lados iguales que son los que forman el ángulo obtuso; el otro lado es mayor que éstos dos.
  • Triángulo obtusángulo escaleno: tiene un ángulo obtuso y todos sus lados son diferentes.

Triánguloequiláteroisóscelesescaleno
acutánguloTriángulo equilátero.svgTriángulo acutángulo isósceles.svgTriángulo acutángulo escaleno.svg
rectánguloTriángulo rectángulo isósceles.svgTriángulo rectángulo escaleno.svg
obtusángulo
DEFINICIÓN DEL TRIANGULO
El triángulo es un polígono de tres lados.
El triángulo está determinado por tres segmentos de recta que se denominan lados, o por tres puntos no alineados llamadosvértices.
triángulotriángulo

triángulo
Los lados de un triángulo se escriben en minúscula, con las mismas letras de los vértices opuestos.
Los vértices de un triángulo se escriben con letras mayúsculas.
Los ángulos de un triángulo se escriben igual que los vértices.

Triángulos según sus lados

Triángulo equilátero

Triángulo equilátero
Tres lados iguales.

Triángulo isósceles

Triángulo isósceles
Dos lados iguales.

Triángulo escaleno

Triángulo escaleno
Tres lados desiguales.


Triángulos según sus ángulos

Triángulo acutángulo

Triángulo acutángulo
Tres ángulos agudos

Triángulo rectángulo

Triángulo rectángulo
Un ángulo recto
El lado mayor es la hipotenusa.
Los lados menores son los catetos.

Triángulo obtusángulo

Triángulo obtusángulo
Un ángulo obtuso.


tomado de DITUTOR

No hay comentarios:

Publicar un comentario